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ABSTRACT: Obtaining a faithful probabilistic depiction of moist convection is complicated by unknown errors in
subgrid-scale physical parameterization schemes, invalid assumptions made by data assimilation (DA) techniques, and
high system dimensionality. As an initial step toward untangling sources of uncertainty in convective weather regimes, we
evaluate a novel Bayesian data assimilation methodology based on particle filtering within a WRF ensemble analysis and
forecasting system. Unlike most geophysical DA methods, the particle filter (PF) represents prior and posterior error dis-
tributions nonparametrically rather than assuming a Gaussian distribution and can accept any type of likelihood function.
This approach is known to reduce bias introduced by Gaussian approximations in low-dimensional and idealized contexts.
The form of PF used in this research adopts a dimension-reduction strategy, making it affordable for typical weather appli-
cations. The present study examines posterior ensemble members and forecasts for select severe weather events between
2019 and 2020, comparing results from the PF with those from an ensemble Kalman filter (EnKF). We find that assimilat-
ing with a PF produces posterior quantities for microphysical variables that are more consistent with model climatology
than comparable quantities from an EnKF, which we attribute to a reduction in DA bias. These differences are significant
enough to impact the dynamic evolution of convective systems via cold pool strength and propagation, with impacts to
forecast verification scores depending on the particular microphysics scheme. Our findings have broad implications for
future approaches to the selection of physical parameterization schemes and parameter estimation within preexisting data
assimilation frameworks.

SIGNIFICANCE STATEMENT: The accurate prediction of severe storms using numerical weather models depends
on effective parameterization schemes for small-scale processes and the assimilation of incomplete observational data
in a manner that faithfully represents the probabilistic state of the atmosphere. Current generation methods for data as-
similation typically assume a standard form for the error distributions of relevant quantities, which can introduce bias
that not only hinders numerical prediction, but that can also confound the characterization of errors from the model
itself. The current study performs data assimilation using a novel method that does not make such assumptions and ex-
plores characteristics of resulting model fields and forecasts that might make such a method useful for improving model
parameterization schemes.
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1. Introduction

As ensemble sizes become large, particle filter (PF) ap-
proaches to data assimilation (e.g., Doucet et al. 2001) present
theoretical advantages for weather prediction, mainly by
avoiding the Gaussian assumptions inherent to contemporary
parametric data assimilation methods. Imbalances in forecast
initial conditions caused by such assumptions commonly lead
to transient adjustment effects and degradation of forecast
performance at extended lead times and small spatial scales,
acting in a way that is difficult to distinguish from other sour-
ces of error (e.g., Poterjoy et al. 2017; Poterjoy 2022a). As
nonparametric methods, PFs are capable of quantifying com-
plex non-Gaussian prior probability distributions such as
those characteristic of modeled physical relationships be-
tween hydrometeor mixing ratios and radar reflectivity.

Standard PFs have long been impractical for use with
high-dimensional geophysical models due to the ensemble
sizes required for moderate- to high-dimensional applica-
tions (e.g., Bengtsson et al. 2008; Bickel et al. 2008; Snyder
et al. 2008). However, increased affordability of PFs has re-
cently followed from approximations such as localization,
which directly modulate dependence between state varia-
bles updated by data assimilation; see Farchi and Bocquet
(2018) and van Leeuwen et al. (2019) for a review. The lo-
calized particle filter (LPF) (Poterjoy 2016; Poterjoy et al.
2019; Poterjoy 2022b) adopted for this study limits the spa-
tial influence of update steps in a manner similar to that of
covariance localization in Gaussian data assimilation meth-
ods, such as the ensemble Kalman filter (EnKF), which has
proven to be a tractable way of overcoming steep computa-
tional costs for alternative ensemble filters (e.g., Bengtsson
et al. 2003; Poterjoy 2016; Penny and Miyoshi 2016; Poterjoy
and Anderson 2016; Lee and Majda 2016; Robert and
Künsch 2017; Chustagulprom et al. 2016).Corresponding author: JoshuaMcCurry, jmccurry@umd.edu

DOI: 10.1175/MWR-D-22-0260.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

1609

VOLUME 151 MONTHLY WEATHER REV I EW JULY 2023

Brought to you by U.S. Department Of Commerce, Boulder Labs Library | Unauthenticated | Downloaded 06/28/23 03:46 AM UTC

mailto:jmccurry@umd.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


In the context of moist processes in atmospheric models,
past idealized model simulations have shown that the LPF
more frequently preserves positive hydrometeor mixing ratios
during filter updates, when compared to typical EnKF up-
dates. Nevertheless, the extent of consistency between LPF
updates and non-Gaussian, model constrained posterior den-
sities for moist convection has not been demonstrated outside
of idealized simulations. To this point, covariance localization
techniques with the EnKF are known to cause adjustments to
wind and mass fields that scale inversely with localization radii
(Kepert 2009; Greybush et al. 2011), and localization in the
LPF likewise constitutes a residual source of imbalance in
posterior fields that must be addressed through the tuning of
localization radii. The primary goal of the current study and
of future research is to gauge the ability of the LPF to meet
expectations afforded to standard PF methods in regard to
minimizing data assimilation-related bias for non-Gaussian
posteriors. Establishing a high level of consistency between
LPF posteriors and non-Gaussian error structures imposed by
nonlinearities in model physics would allow those investigat-
ing model bias to apply data assimilation without introducing
a significantly confounding source of error and could there-
fore provide a basis for characterizing biases introduced by
microphysical schemes and other model physics components.

The current paper adopts a Weather Research and Fore-
casting (WRF) Model ensemble framework for investigating
systematic differences between posterior quantities generated
by the LPF and corresponding quantities from parametric
data assimilation methods that assume Gaussian error struc-
tures. The modeling system resembles the configuration de-
signed for past iterations of the National Severe Storms
Laboratory (NSSL) Warn-on-Forecast system (WoFs; Wheatley
et al. 2015; Jones et al. 2016; Lawson et al. 2018), which tar-
gets forecast improvements at short lead times. As a proof-
of-concept, the present manuscript discusses results from
small (64-member) ensemble sizes affordable for most re-
search and operational weather prediction systems, focusing
on microphysical variables that relate nonlinearly to observa-
tions of radar reflectivity. Future studies will build on the
comparison methodology established here to evaluate filter
solutions for large ensemble runs of O(103) members. Larger
ensembles will reduce sampling error and allow for the applica-
tion of the LPF using relaxed heuristic features, including larger
localization radii. While certain aspects of this study focus on
forecast performance, the primary goal is not to assess the LPF’s
utility for operational data assimilation, but rather to evaluate
their potential for future work contingent on the quality of poste-
rior representations afforded under nonidealized conditions.

2. Modeling system

a. Model configuration

Experiments were performed with the Advanced Re-
search WRF (V4.2) (Skamarock et al. 2019), using a single
900 3 900 km2 domain with 50 vertical levels and a 3-km
horizontal grid spacing, which is sufficient to explicitly
permit convection in numerical experiments. This domain

configuration was kept constant for all experiments but
moved to appropriate geographical locations to accommo-
date events of interest.

Choices for physical parameterization schemes were moti-
vated by past experiments performed at NSSL for the WoFS
(Jones et al. 2018; Potvin et al. 2020), which served as the
benchmark for our modeling system. For microphysics param-
eterization, we chose the NSSL two-moment variable-density
scheme (NVD). The NVD scheme is notable for its fully
double-moment representation of all hydrometeor classes,
and the inclusion of graupel density as a diagnosable parame-
ter (Mansell 2010). We selected the Rapid Radiative Transfer
Model (RRTM) (Iacono et al. 2008) and the Dudhia scheme
(Chen and Dudhia 2001) as our respective longwave and
shortwave radiative transfer schemes. Additional physics
options included the RUC Land Surface Model for surface
physics (Smirnova et al. 2016), the Monin–Obukhov Similar-
ity scheme for surface-layer physics (Jiménez et al. 2012), and
the YSU scheme for PBL physics (Ghonima et al. 2017).
Since our model configuration is convective allowing, we did
not specify a cumulus parameterization scheme. In addition
to our default configuration using NSSL microphysics, we per-
formed a limited set of experiments using the double-moment
Thompson microphysics scheme (Thompson et al. 2008),
which is commonly used in research and operational contexts.

b. Data assimilation methods

The LPF adopted in this study was first introduced in Poterjoy
(2016; hereafter P16) and revised in Poterjoy et al. (2019). The fil-
ter operates by assimilating observations with independent errors
sequentially and combining sampled particles and prior particles
for each observation. The LPF satisfies the bootstrap PF solution
(Gordon et al. 1993) for state variables located in close geograph-
ical proximity to observations in the sequence but maintains the
prior particles for state variables located far from observations.
A smooth correlation function that tapers to zero at a finite user-
specified distance controls the spatial influence observations have
on posterior estimates, which greatly reduces the number of par-
ticles needed for geophysical data assimilation. The current ver-
sion of the LPF incorporates improvements introduced by
Poterjoy (2022b) to further reduce sampling error for limited en-
semble sizes. These include tempering, which uses a factorization
of the Bayesian observation likelihood to iteratively approach a
posterior solution. Tempering can be extended to include a
“hybrid” methodology that combines the LPF with parametric
filters, such as ensemble Kalman filters (EnKFs).

For experiments that employed the hybrid variant of the
LPF, we specified a “minimum residual” parameter value of
0.8, indicating that tempering steps were structured so as to
perform an LPF update using 20% of the likelihood and an
EnKF update using the remaining 80% of the likelihood; see
Poterjoy (2022b) for a detailed description of this factoriza-
tion and Kurosawa and Poterjoy (2022) for potential strate-
gies for choosing the factorization adaptively. This choice
followed from a series of sensitivity tests (not shown), which
were aimed at reducing prior mean squared errors while retain-
ing most of the positive effects of using general approximations
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for error distributions. As we will demonstrate, this particular
setup does not necessarily produce updates dominated by the
succeeding EnKF step, since the innovation term between ob-
servations and modeled quantities can be substantially reduced
after the initial application of the LPF. Following the LPF up-
date with an EnKF update, however, greatly reduces challenges
associated with sampling bias in the standard LPF, as will be
demonstrated in the following section. To further cope with
sampling error, we set the particle mixing parameter (Poterjoy
2022b) to 0.5, which helped maintain diversity in posterior
model states in the absence of localization. As a form of poste-
rior covariance inflation, we applied relaxation-to-prior-spread
(RTPS) (Whitaker and Hamill 2012) on the EnKF portion of
the hybrid update with a relaxation coefficient of 0.8, but re-
tained the full update performed by the LPF. Experiments with
the nonhybrid variant of the LPF used the same mixing param-
eter, but with localization radii multiplied by a factor of 0.75.

For comparison with a Gaussian data assimilation method,
we performed identical data assimilation experiments with an
ensemble adjustment Kalman filter (EAKF), which is a deter-
ministic square root variant of the EnKF (Anderson 2001).
Square root EnKFs, like the EAKF, represent the most com-
monly used ensemble data assimilation method in atmospheric
science (Houtekamer and Zhang 2016). To correspond with
the hybrid particle filter variant, we applied RTPS with a coef-
ficient of 0.8. Localization radii were identical to those used
with the hybrid variant LPF.

c. Experiment design

We performed sequential data assimilation experiments
for a select number of severe weather outbreaks during the
2019–20 warm seasons. These experiments generated poste-
rior ensemble members at various times along the life cycle of
each event, which are the primary subject of this paper. The
modeling system constructed for this research was adapted
from the NSSL experimental WoFS (Wheatley et al. 2015;
Jones et al. 2016; Lawson et al. 2018).1 It incorporates the

Data Assimilation Research Test bed (DART), which sup-
ports a host of ensemble filters, including the EAKF and the
LPF variant adopted for this study.

To support a flexible ensemble size in future experiments,
our modeling system generates initial and lateral boundary
conditions by perturbing an analysis from the High Resolu-
tion Rapid Refresh (HRRR) (James et al. 2022) forecast with
Gaussian noise for model horizontal wind, potential tempera-
ture, and moisture fields. Hourly updates were applied to lat-
eral boundary conditions for each member during data
assimilation cycling, using information from the posterior en-
semble and HRRR forecasts. After each hourly update, addi-
tional Gaussian noise was added to boundary conditions to
maintain spread. All cases used 64 ensemble members, which
is roughly twice the size used by the WoFS. Members were
initially generated from 1-h forecasts run from a perturbed
HRRR analysis, which were used to initiate sets of experi-
ments that consist of 14 h of sequential DA. To cope with
under-dispersion in the ensemble that cannot be treated by
RTPS alone, we also used additive inflation at 15-min inter-
vals near areas of high observed reflectivity (Dowell and
Wicker 2009). We retained only the last 9 h of posterior en-
semble members for comparison in order to reduce the de-
pendence of model solutions on the initial HRRR analysis.
We also initialized 90-min ensemble forecasts every 30 min
from these solutions, giving a total of 19 ensemble forecasts
per case study. We generated two sets of cycling data assimila-
tion experiments and forecasts using 15- and 5-min cycling
frequencies. The 15-min cycling frequencies are characteristic
of experimental real-time prediction systems such as the
WoFS. Five-minute cycling frequencies allowed us to investi-
gate posterior characteristics when generated from priors
evolved over a shorter integration time, which reduced devia-
tions from Gaussianity caused by nonlinear model processes.
Furthermore, all experiments used WRF “restart” files to
carry forward all prognostic variables and tendencies. This
choice further isolated the impact of data assimilation on fore-
cast evolution at short lead times, by avoiding contributions
to transient adjustments from the equilibration period associ-
ated with cold-starts from history files. An overview of our
modeling system configuration is shown in Fig. 1.

To improve the relevance of our results to operational con-
ditions, we assimilated as many observational types as feasible

FIG. 1. Configuration diagram for experimental modeling system used for sequential data
assimilation experiments.

1 The WoFS was implemented by NSSL as part of the NOAA
Warn-on-Forecast program to spur improvements in forecast lead
time and accuracy for severe threat events using convection-allowing
ensembles and advanced data assimilation techniques (Stensrud et al.
2009, 2013).
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based on data availability and compatibility with the forward op-
erators in DART. The Meteorological Assimilation Data Ingest
System (MADIS) from NOAA provided surface observations of
temperature and wind from mesonet and Meteorological Aero-
drome Reports (METAR) data, as well as observations of tem-
perature and wind in the lower troposphere from the Aircraft
Communications Addressing and Reporting System (ACARS).
Although temporally sparse, we also assimilated derived tropo-
spheric winds from the Geostationary Operational Environmen-
tal Satellite, made available through MADIS. From the Next
Generation Radar (NEXRAD) network, we assimilated obser-
vations of radar reflectivity and radial velocity in areas of precipi-
tation, as well as Multi-Radar Multi-Sensor (MRMS) clear-air
estimates of reflectivity in areas not experiencing storm activity.
The latter are useful in removing areas of predicted reflectivity
and associated convective activity in the prior that do not coin-
cide with observed storm features.

d. Case studies

In the interest of sampling a set of events sufficiently repre-
sentative of deep moist convective regimes, we chose four test
cases to cover several distinct dynamical setups (Fig. 2). The

defining difference between these cases is in convective mode,
ranging from single-cell convection to organized convection
within a mesoscale convective system. Each case is covered by
an observational network of comparable density and observa-
tion type composition.

Our first test case covers the period from 1200 UTC 28 May
to 0300 UTC 29 May 2019, within a domain centered on north-
ern Missouri (Fig. 2a). A mesoscale convective system initially
associated with a shortwave trough propagates across the do-
main in a northeastward direction. The complex synoptic-scale
setup with weakening convective inhibition and marginal direc-
tional shear made for difficult forecasting conditions at the time
of the event (Leitman and Thompson 2019). The system was
ultimately associated with a diverse array of convective modes
dominated by multicellular storms but including discrete super-
cells and simple single-cell convection.

The second test case covers the period from 1000 UTC
3 July to 0100 UTC 4 July 2019 over the Ohio Valley region
(Fig. 2b). Ordinary single-cell convection appears beginning
after 1600 UTC under strong mean-layer CAPE and weak di-
rectional shear, becoming multicellular with new cells evident
at outflow boundaries, but without widespread organization

FIG. 2. Observed 10-cm composite reflectivity plotted at representative hourly times for test cases used in data
assimilation experiments. Sample reflectivity output shown for experiments starting at (a) 1200 UTC 28 May 2019,
(b) 1000 UTC 3 Jul 2019, (c) 0700 UTC 17 Jul 2019, and (d) 1000 UTC 12 Aug 2020.
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into quasi-linear structures. The transition from single to mul-
ticellular convection is quite rapid in this case, presenting a
notable challenge for data assimilation.

The third case extends from 0700 UTC 17 July to
0100 UTC 18 July 2019 over a domain nearly collocated
with that of the first test case (Fig. 2c). A quasi-linear con-
vective system with embedded bow-echo-type segments
propagates from the northwest to southeast of the domain,
beginning to dissipate after nightfall. This case features
highly organized multicellular convection with discernible
inflow and outflow structures.

The fourth and final case begins at 1000 UTC 12 August
and ends at 0100 UTC 13 August 2020, in a domain centered
on the mid-Atlantic seaboard (Fig. 2d). It is a classic pulse-
type event that does not show any obvious signs of multicel-
lular organization. Convection initiates nearly uniformly at
1600 UTC, continuing under strong surface heating until
nightfall.

3. Characterizing posterior ensemble members

a. Analysis of prior and posterior climatology

To investigate systematic differences in EnKF and LPF
state estimates we approximated climatological bivariate mar-
ginal probability density functions (PDFs) of radar reflectivity
and hydrometeor mixing ratios for model prior and posterior
states. This choice followed the substantial influence of radar
reflectivity measurements on analyses and forecasts produced
over these events. The samples used to generate these PDFs
came from WRF gridpoint values at all times within the dura-
tion of sequential cycling and across all four case study events.
We present PDFs generated in this manner for both 15-min
(Fig. 3) and 5-min cycling frequencies (Fig. 4). Gridpoint sam-
pling was confined to the eighth vertical WRF coordinate
level of our domain when examining rainwater mixing ratio
(qr) and the sixteenth level when considering graupel mixing
ratio (qg) in order to ensure that the population from which

FIG. 3. Marginal bivariate probability density function (PDF) plots for 15-min cycling frequency experiments. Prior (hatched) and poste-
rior (shaded) probability density for 10-cm radar reflectivity and rainwater mixing ratio for sequential assimilation with (a) EnKF, (b) hy-
brid particle filter, and (c) localized particle filter. PDFs for 10-cm radar reflectivity and graupel mixing ratio for sequential assimilation
with (d) EnKF, (e) hybrid particle filter, and (f) localized particle filter. Axis scaling is maintained across panel rows.
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grid cells were sampled consisted of predominately unfrozen
and frozen species, respectively. The eighth and sixteenth ver-
tical levels roughly correspond to pressure levels of 850 and
550 hPa, respectively, and will be referred to as such for the
remainder of the text. Sampled grid points from these levels
were additionally filtered to ensure that the relevant species
was the only contributor to reflectivity. Posterior output
for radar reflectivity was recalculated from updated mixing
ratios using the relations provided in the NSSL two-moment
scheme. The NSSL microphysics configuration used in this
study forms Z–q relationships for rainwater that are solely
functions of mixing ratio and number concentration, with
number concentration in the expression denominator. There-
fore, in the case of rainwater, we may fully characterize the
relation between reflectivity updates and updates to qr by ex-
amining additional PDFs for hydrometeor mass mixing ratio
and number concentration nr. Although the relation between
qg and reflectivity is additionally complicated by diagnosed
ice density, we may also gain insight by examining PDFs with
graupel number concentration, ng. For these PDFs we again
show figures for 15-min (Fig. 5) and 5-min (Fig. 6) cycling,

taken at the 850- and 550-hPa pressure levels for rain and
graupel, respectively.

The 15-min EnKF posterior PDF for qr and radar reflectiv-
ity is notable since it indicates a significant presence of high
reflectivity grid points above 50 dBZ (Fig. 3a). Some of these
high reflectivity posterior points are collocated with elevated
qr above 0.5 g kg21, falling within regions of the state-space
supported by the corresponding EnKF prior. However, signif-
icant probability density at high reflectivity values also occurs
with qr between 0.05 and 0.5 g kg21, indicating that the EnKF
commonly produces state-space solutions not supported by
the model. Looking at the corresponding 15-min PDF be-
tween qr and nr (Fig. 5a), the EnKF updates show a shift of
probability density toward lower number concentration from
prior to posterior at all mixing ratios above 0.05 g kg21, pre-
sumably the cause of elevated reflectivity at lower qr. In con-
trast, the LPF configurations at the same pressure level
produce posterior densities for qr and radar reflectivity that
are more consistent with the support of their priors, with the
pure LPF producing the least disagreement (Figs. 3b,c). Pos-
terior members generated by both LPF methods feature few

FIG. 4. As in Fig. 3, but for 5-min cycling frequency.
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grid points with 501 dBZ reflectivity at qr below 0.5 g kg21,
and also indicate a reduced occurrence of points with qr above
0.5 g kg21 when compared to their respective priors. Again
looking at the 15-min PDF for qr and nr (Figs. 6b,c), while the
PF posteriors reduce areas of high probability density for ele-
vated qr, the pure LPF does not substantially change the na-
ture of the relationship between qr and nr from that indicated
by the prior PDF, and the hybrid does so only to a degree in-
termediate between EnKF and LPF. The behavior here is
consistent with a persistent removal of large hydrometeors by
the LPF methods in favor of lower reflectivity, lower qr model
solutions during resampling, while preserving the physical re-
lationships between qr, nr and reflectivity output in model
priors.

When comparing experiments with 15 and 5-min cycling
frequencies, notable differences are apparent in the span of
prior support toward higher reflectivity and mixing ratios.
The 5-min cycling reduces support in state space regions of
reflectivity above 50 dBZ and largely excludes qr above
2.5 g kg21. EnKF posteriors produced from 5-min cycling

priors still generate points of high reflectivity outside the
prior, but in this case, they occur over a more limited region
of state space and compose a smaller portion of posterior
probability density (Fig. 4a). As before, these anomalous solu-
tions are mediated by additional posterior density at low val-
ues of nr as shown in the 5-min PDF for qr and nr (Fig. 6a).
The LPF configurations for 5-min cycling again produce pos-
terior PDFs that more consistently remain within the support
of priors compared to the EnKF for both sets of marginals,
but here the removal of probability density at high mixing ra-
tios between prior and posterior is virtually absent due to the
already reduced density of high mixing ratio solutions with
5-min PF priors (Figs. 4b,c). Increased cycling frequency
allows the prior to remain more Gaussian by limiting the du-
ration of the model advance and associated nonlinear error
growth and should therefore be more amenable to assimila-
tion with a Gaussian filter such as the EnKF. The apparent
differences between 5- and 15-min EnKF posteriors indicate,
at the least, a strong dependence for filter behavior on cycling
frequency. Changes to LPF posteriors are more muted, with

FIG. 5. Marginal bivariate probability density function (PDF) plots for 15-min cycling frequency experiments. Prior (hatched) and poste-
rior (shaded) probability density for rainwater mixing ratio and rainwater number concentration with (a) EnKF, (b) hybrid particle filter,
and (c) localized particle filter. PDFs for graupel mixing ratio and graupel number concentration for sequential assimilation with
(d) EnKF, (e) hybrid particle filter, and (f) localized particle filter. Axis scaling is maintained across panel rows.
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both cycling frequencies producing posteriors similar to the
5-min cycling frequency EnKF. This could suggest that the
presence of high reflectivity, high qr points in the 15-min
EnKF posterior is mediated by Gaussian assumptions inher-
ent to the EnKF. The decrease in probability density for
state-space regions of high reflectivity and high mixing ratio
between 15- and 5-min priors is equally notable and may indi-
cate a model bias toward strong convection or another source
of high reflectivity that is ameliorated by all three filters when
subject to frequent data assimilation. Indeed, several studies
lend support to the idea that NSSL microphysics overpredicts
regions of high reflectivity (Johnson 2019; Potvin et al. 2020;
Skinner et al. 2018).

The corresponding marginal PDFs taken at the 550-hPa
pressure level for qg and reflectivity show similarly filter-
specific behavior, but differ significantly in trends between
5- and 15-min cycling frequencies. The 15-min EnKF poste-
rior PDF indicates elevated probability densities for reflectiv-
ity values above 40 dBZ at a broad range of mixing ratios, in
contrast to the prior PDF where such solutions are sparse and
limited to mixing ratios above 0.5 g kg21 (Fig. 3d). As with
the marginal for qr and reflectivity, this is again mediated by a
density shift toward smaller number concentrations (Fig. 5d).

The PDF for the pure LPF, in contrast, features little density
for high reflectivity solutions of 401 dBZ and is the most con-
sistent with its prior, with the PDF for the hybrid taking a
middle ground between both methods (Figs. 3e,f). The 5-min
cycling frequency retains this trend, but reduces the magni-
tude of differences between priors and posteriors for the
EnKF and hybrid particle filter (Figs. 4e,f). Unlike the mar-
ginal PDFs for prior qr and reflectivity, the prior PDFs for qg
and reflectivity do not lose density in high mixing ratio areas
of state-space between 15- and 5-min cycling (Fig. 6). The bi-
variate marginal PDFs for prior qg and ng also remain distinct
between filtering methods at 15-min cycling frequency, with
the support of the LPF methods spanning slightly higher num-
ber concentrations than that of the EnKF (Figs. 5d–f). Inter-
estingly, this distinction is maintained from 15- to 5-min
cycling frequency, in contrast to the trend with rainwater mix-
ing ratios and number concentrations where the univariate
marginal distribution for number concentration evens out be-
tween filtering methods. This behavior is driven by strong
EnKF adjustments to the marginal PDF that are maintained
from the posterior into the prior with the effect of moving
density toward lower ng even at short cycling frequencies
(Fig. 6d). LPF adjustments on the other hand largely maintain

FIG. 6. As in Fig. 5, but for 5-min cycling frequency.
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the prior marginal distribution of ng and qg (Figs. 6e,f). Al-
though adjustments to the ng marginal from prior to posterior
are not necessarily nonphysical when associated with changes
to the dynamical evolution of storms, the fact that downward
adjustments to ng are seemingly independent of qg above
0.05 g kg21 would suggest that it is instead an artifact of
Gaussian assumptions made by the EnKF.

Since the DART implementation of the EnKF updates ob-
servation-space priors during sequential assimilation accord-
ing to Anderson and Collins (2007), posterior diagnosed
reflectivity may not reflect values consistent with hydrometeor
quantities given a nonlinear forward operator. Though the
pure LPF is not directly affected by nonlinearity in measure-
ment operators, similar discrepancies can be produced by the
method’s kernel density distribution mapping (KDDM) step.
The DART output reflectivity is informative as the working
variable “seen” by the filter algorithm during assimilation and
before recalculation of diagnostic reflectivity during the WRF
advance step. With this in mind, we examined bivariate PDFs

of mixing ratio and DART output reflectivity. We again pro-
duced PDFs for 15- and 5-min cycling frequencies (Figs. 7
and 8). The 15-min EnKF posteriors for both species extend
probability density at high mixing ratios toward lower values of
reflectivity than supported by the prior PDF, and extend proba-
bility density at low mixing ratios toward higher values of reflec-
tivity (Fig. 7a). The PDFs for 5-min cycling show the same,
albeit muted, extensions of probability density (Fig. 8a). As with
recalculated reflectivity, the posterior PDFs for the LPF meth-
ods are more consistent with the support of their respective pri-
ors, especially in the case of the pure LPF (Figs. 7b,c and 8b,c).
These results together show that nonlinear forward operators
affect the EnKF algorithm to a greater degree than either LPF
method when adopting the parallel filter configuration (Anderson
and Collins 2007). The low reflectivity states found in the pos-
terior EnKF PDF and absent in the prior further suggest that
linear approximations for measurement operators induce a
bias that may account for the recalculated reflectivity estimates
being higher than in the LPF methods.

FIG. 7. Marginal bivariate probability density function (PDF) plots for 15-min cycling frequency experiments. Prior (hatched) and poste-
rior (shaded) probability density for DART posterior output 10-cm radar reflectivity and rainwater mixing ratio for sequential assimilation
with (a) EnKF, (b) hybrid particle filter, and (c) localized particle filter. PDFs for 10-cm radar reflectivity and graupel mixing ratio for se-
quential assimilation with (d) EnKF, (e) hybrid particle filter, and (f) localized particle filter. Axis scaling is maintained across panel rows.
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As an addendum to the preceding analysis and to provide
specific contexts for the aforementioned marginal PDFs, we
plotted prior and posterior ensemble member values for qr
and NSSL estimated reflectivity, as well as for nr and reflectiv-
ity at two characteristic grid point locations. We generated
posteriors here from a single filtering step applied to identical
priors dated 1800 UTC 3 July from our sequential data assimi-
lation experiment with the LPF. In this way, we show the
distinct effects of each filtering method that lead to the aggre-
gated behavior shown above for longer cycling intervals. Grid
points presented here were identified according to the ensem-
ble prior and posterior means for reflectivity, so that distinct
behavior could be characterized according to the direction of
reflectivity adjustment, and feature minimal contributions to
reflectivity from graupel, hail or snow. We further required
that sampled grid points be collocated with reflectivity obser-
vations. We show ensemble member states for a grid cell with
a negative analysis increment for reflectivity in Fig. 9 and those
for a grid cell with a positive analysis increment in Fig. 10. Re-
sults at this single grid cell location highlight the comparative
advantages and disadvantages offered by LPF methods with
relatively small ensemble sizes. Downward adjustments with

the LPF and hybrid methods sample new ensemble members
effectively from physical states that conform to the Z–Q rela-
tions governing reflectivity generated by rainfall in the NSSL
microphysical scheme (Figs. 9b,c), whereas the EnKF samples
members in such a way as to create mixing ratios that wildly
diverge from the reflectivity indicated by observations (Fig. 9a),
accompanied by a proliferation of unexpectedly high number
concentrations for low mixing ratio solutions (Fig. 9d). Up-
ward adjustments by the LPF are hindered by sampling issues
related to insufficient ensemble size; with only a single prior
member featuring reflectivity close to that of the nearby ob-
servation, the LPF posterior solutions cluster around prior
members with moderate reflectivity and fail to sample from
regions of higher mixing ratio (Fig. 10c). In contrast, the
EnKF and hybrid move their posterior ensemble members
away from the prior toward appropriate regions of state
space (Figs. 10a,b). In this case, the EnKF adjustment produ-
ces spurious number concentrations in the posterior that
are well below those suggested as plausible by prior ensemble
members, while number concentrations in the hybrid poste-
rior remain close to those for high mixing ratio solutions in
the prior (Figs. 10d,e).

FIG. 8. As in Fig. 7, but for 5-min cycling frequency.
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b. Cycling period verification using root mean departure
from observations

Although the LPF methods appear to produce posterior
members that more faithfully represent model solutions pro-
duced by the WRF model, this does not guarantee that they
will produce the most accurate forecasts. Model error can be
especially challenging for particle filtering methods if prior
model states do not overlap with the true prior (Poterjoy et al.
2017). To gauge forecast accuracy from each method, we per-
formed a simple verification over the period of sequential
data assimilation by calculating the root-mean-square depar-
ture from observations (RMSD). For this purpose, we verified
ensemble mean quantities over observation locations with
valid entries for prior mean, and discounted observations re-
jected by all three filters. A squared error type metric applied
to ensemble mean fields provides confirmation of fit to

observed quantities, albeit without considering higher-order
moments. RMSD for 15-min cycling is presented for radar re-
flectivity (Fig. 11) and radial velocity (Fig. 12) measurements
for the duration of sequential cycling for each test event. Re-
sults for reflectivity and radial velocity verifications show a
clear advantage for the hybrid and EnKF over the pure LPF
across events, with the EnKF slightly outperforming the hy-
brid in terms of prior RMSDs. Note that RMSD scores show
strong filter independent variability between events that can
be ascribed to event dynamics, such as relatively high RMSD
scores for radial velocity when considering the quasi-linear
convective system of 17–18 July 2019 that featured strong di-
rectional winds (Fig. 12c). Strong results for the hybrid corre-
spond with findings from perfect model experiments with the
Lorentz 96 model (Poterjoy 2022b), which showed that the
tempering iterations of the hybrid method allowed it to out-
perform both a standard LPF and an EnKF in terms of

FIG. 9. 10-cm radar reflectivity and rainwater mixing ratio for prior (orange) and posterior (blue) ensemble members at a sampled grid-
point location for a single adjustment by (a) the EnKF, (b) hybrid LPF, and (c) LPF. 10-cm radar reflectivity and rainwater number con-
centration for prior (orange) and posterior (blue) ensemble members at a sampled gridpoint location for a single adjustment by (d) the
EnKF, (e) hybrid LPF, and (f) LPF. Average reflectivity value for observations within the corresponding gridpoint location is indicated by
horizontal line in blue.
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posterior RMSE in the presence of model error. When taken
along with the previous characterization of prior and poste-
rior densities, the verification results suggest compelling ad-
vantages to the hybrid LPF as a method that retains posterior
fidelity to model solutions while producing a better forecast
fit to observations than the pure LPF. For this reason, and to
simplify the presentation of proceeding figures, we chose the
hybrid as a representative non-Gaussian method for further
comparison against the EnKF. Although not presented, we
note that the aforementioned differences in filter performance
persisted with 5-min cycling.

4. Qualitative comparison of storm evolution

a. Domain-averaged quantities during continuous cycling
data assimilation

Modeling systems that represent mesoscale processes face
significant challenges from data assimilation bias mediated by
Gaussian assumptions and associated with spurious correc-
tions to small-scale features (Poterjoy 2022a). We wish to

connect the data assimilation-induced biases for microphysi-
cal quantities indicated in our posterior PDFs with concrete
impacts on storm evolution and forecast verification. To this
end, we first examined a proxy for cold pool strength during
the course of sequential data assimilation with a 15-min cy-
cling frequency for all four of our test case events. Cold pool
intensity mediates dynamical processes responsible for con-
vective organization and can be indicative of how data assimi-
lation is handling convective initiation or modifying the
strength of preexisting moist convection.

To gauge cold-pool activity we plotted the difference be-
tween EnKF and hybrid surface virtual potential tempera-
tures (uy), averaged over prior ensemble member grid cells
featuring a composite reflectivity above 25 dBZ (Fig. 13). The
reflectivity threshold serves as a generalized indicator of con-
vective activity where cold pools are likely to form. For all
four events, sequential data assimilation with the EnKF
quickly results in lower uy than assimilation with the hybrid
near areas of convection. This trend continues to strengthen
over the course of sequential assimilation. Lower uy produced

FIG. 10. As in Fig. 9, but for a sampled grid point with a positive analysis increment.
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during EnKF cycling is indicative of stronger or more wide-
spread convection that produces more intense cold-pool de-
velopment and confirms that the two assimilation methods
are producing measurably different outcomes for system
evolution.

b. Forecast evolution from identical priors

To more closely examine how differences in posterior
quantities from a filtering methodology impact storm evolu-
tion, we generated two sets of forecast initial conditions from
an identical prior ensemble by applying a single filtering step
with a 15-min assimilation window for the EnKF and hybrid
methods. We chose the initialization time as 1930 UTC 3 July
for the case study covering this date due to its temporal place-
ment after the start of convective initiation, but before peak
development of the MCS. We took prior members from the
corresponding time stamp during sequential data assimilation

with the pure LPF, then used posterior members to initialize
45-min ensemble forecasts output at 1-min intervals. This ap-
proach produced posterior fields and forecast output that
differed only in the filtering method used for analyses and
evolution from the resulting initial conditions. We supple-
mented our tests using an additional set of experiments that
omitted hydrometeor updates during data assimilation, with
the goal of isolating impacts attributable to microphysical var-
iables. We also present results from forecasts initialized with-
out data assimilation for reference.

We again examined cold pool activity as a proxy for the
presence and strength of convection. Because we considered
only a short forecast period with minimal input from the diur-
nal cycle and synoptic-scale forcing, we could conveniently
define cold pool extent using a fixed threshold of surface-level
virtual potential temperature (Fig. 14a). We set this threshold
at 306.5 K to achieve the closest fit to manually identified cold
pool structures while avoiding contamination from other

FIG. 11. Prior root-mean departure from observations (dashed) and total error (solid) for
10-cm radar reflectivity, plotted for the duration of 15-min frequency data assimilation for
(a) 28–29 May 2019, (b) 3–4 Jul 2019, (c) 17–18 Jul 2019, and (d) 12–13 Aug 2020 events. Number
of observations considered for RMSD calculations annotated in gray at hourly intervals.
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features such as bodies of water. We additionally plotted
domain-averaged accumulated gridcell precipitation for the
same filter configurations (Fig. 14b). Forecasts initialized from
standard EnKF initial conditions quickly produce greater cold
pool extent than any other filter configuration, including no
assimilation. Notably, the increased cold pool extent is not
created directly in the posterior ensemble but appears rapidly
over the first 15 min of the forecast period, suggesting that
standard EnKF adjustments create conditions for enhanced
convective development. Results for accumulated precipita-
tion show similarly filter-specific behavior, with the standard
hybrid forecasts producing significantly less precipitation over
the forecast period than either the standard EnKF or no as-
similation cases.

Forecasts initialized from filter updates that do not consider
hydrometeor quantities show quite similar progressions of cold
pool extent, with both filters producing slightly more prolific cold
pools than forecasts initialized from the prior ensemble. The
same EnKF and hybrid configurations also result in closely
matched reductions to accumulated precipitation over the fore-
cast period when compared to forecasts from the prior ensemble.

Together, these results suggest that filter-specific behavior be-
tween the EnKF and hybrid methods is strongly mediated by up-
dates to microphysical quantities during data assimilation that
temporarily enhance (weaken) convective activity.

To establish bulk trends in the direction of filter updates to
hydrometeors, we plotted the evolution of rainwater column
mass averaged across the domain (Fig. 14c). Filter adjust-
ments for standard configurations of the EnKF and hybrid act
in opposite directions, with the EnKF increasing column mass
and the hybrid decreasing mass from the prior to initial condi-
tions. There is relatively little adjustment to column mass for
configurations that do not update hydrometeors. Although
column mass returns to similar values for both standard filter
configurations by the end of the 45-min forecast period, it is
notable that significant differences in column mass remain by
15-min post-initialization, which implies that the effects of fil-
ter adjustment to bulk microphysical quantities could com-
pound during sequential cycling. The persistence of transient
adjustments from data assimilation is the likely cause for dif-
fering trends in cold pool intensity between EnKF and hybrid
during our sequential runs.

FIG. 12. As in Fig. 11, but for radar radial velocity.
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We supplement the preceding time series of spatial aver-
age quantities with snapshots of cross sections covering a
300 3 300 km2 region of concentrated storm development
near the center of the domain. The horizontal cross sections in
Fig. 15 indicate areas of ensemble-averaged surface uy below
306.5 K at initialization (Fig. 15a) and 15 min after assimilation
with either the EnKF (Fig. 15b) or hybrid (Fig. 15c) method.
For the latter two cases, we also show shaded areas of ensemble
probability for exceeding 2-mm accumulated surface precipita-
tion. Areas of surface uy below 306.5 K roughly correspond to
cold pool extent for the domain of interest. The EnKF ensemble
produces large regions with accumulated precipitation 15-min
post-initialization, while the hybrid ensemble shows such accu-
mulation only for more limited regions and for a smaller sub-
set of ensemble members. Regions of high probability of

accumulation in the EnKF largely correspond to areas where
the cold pool is present in the EnKF ensemble average, but
not in the hybrid. This result provides further evidence that
the domain-averaged tendency of the hybrid method toward
higher surface uy during sequential cycling is most likely the
result of the accumulated effects of filter updates which restrict
the areal extent of moderate to heavy precipitation in compar-
ison to assimilation with an EnKF.

c. Spatial verification of forecasts

We verified the performance of forecasts initialized during
our sequential data assimilation experiments using the frac-
tions skill score (FSS) forecast verification technique given in
Roberts and Lean (2008). This is a spatial verification method
that uses a neighborhood approach to account for displace-
ment errors and gauge forecast skill for varying degrees of
spatial specificity. For our verifying event, we chose the occur-
rence of composite radar reflectivity over 25 dBZ to corre-
spond with areas of active storm activity. FSS statistics for
5- and 15-min cycling shown in Fig. 16 took as a sample all
20 forecast ensemble members for every forecast initialization
time within the scope of our four events, for a total of 1520
scored forecasts. Results for median, 25th- and 75th-percentile
scores therefore represent a generalized assessment of forecast
performance under variable constraints approximating real-
time forecasting conditions. In addition to fractions skill score
we also show related neighborhood scores using false alarm
rate (FAR) and probability of detection (POD), which are
given by the following relations:

FAR 5
FP

FP 1 TN
, (1)

POD 5
TP

FN 1 TP
, (2)

where FN and FP are, respectively, the numbers of false nega-
tives and false positives given by the model with respect to

FIG. 13. Ensemble-averaged surface virtual potential temperature
difference between EnKF and hybrid priors over the duration of se-
quential cycling for each test case event. Calculated for grid cells
featuring composite reflectivity above 25 dBZ. The x axis denotes
hours since the start of sequential assimilation. The asterisk (*) in
legend indicates the experiment using Thompson microphysics.

FIG. 14. (a) Cold pool extent, (b) accumulated rainfall, and (c) column rainwater mass for prior, initial conditions, and subsequent fore-
cast times for identical prior experiments initialized at 1730 UTC 3 Jul, averaged over forecast members. Values are shown for (black) no
assimilation, (red) assimilation with standard EnKF and (blue) hybrid configurations, and (dashed lines) assimilation with EnKF and hy-
brid configurations that do not update microphysical variables.
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the 25-dBZ threshold as verified by radar observations. TN
and TP are likewise true positives and true negatives. All pre-
ceding calculations consider only grid points within a neigh-
borhood window centered on a single gridpoint location.

Domain averaged values were then found by centering a win-
dow at each grid point, with the exception of points less than
100 km from the domain boundary. In the specific case of
FSS, the number of windows with at least a single observed

FIG. 15. (a) Cold pool extent (hatched area) at initialization. Cold pool extent and ensemble probabilities of exceeding 2-mm accumulated
surface precipitation 15 min after single assimilation cycle with (b) EnKF and (c) hybrid.

FIG. 16. Fractions skill score for (a) 15- and (d) 5-min cycling. False alarm rate for (b) 15- and (e) 5-min cycling. Probability of detection
for (c) 15- and (f) 5-min cycling. Metrics are aggregated across all events based on time after initialization. Solid lines indicate median val-
ues and dashed lines indicate 25th- and 75th-percentile values.
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event acted as a normalizing factor for the calculation of the
domain averaged score, whereas for all other metrics the do-
main average was taken as the simple numerical mean of win-
dow scores. We chose a neighborhood length scale of 30 km
for all preceding calculations, which provided a balanced met-
ric informed by both the resolution of discrete storm struc-
tures as well as more general performance characteristics such
as precipitation bias.

For 15-min cycling, the EnKF shows a slight advantage in
terms of FSS for the first 30-min post-initialization, with both
filters achieving nearly identical scores for time stamps from
30- to 90-min post-initialization. Looking at scores for POD
and FAR, the EnKF maintains an advantage for POD from
initialization to 30 min, from which point the hybrid achieves
higher scores. Hybrid forecasts produce a slightly lower FAR
than EnKF forecasts from initialization to 30-min time
stamps, with longer forecasts showing a higher FAR for the
hybrid. As FSS reflects an award for predicted events as well
as a penalization for false alarms, it is apparent that the slight
false alarm advantage of the hybrid during early forecast time
stamps is canceled out by the enhanced detection of the
EnKF. Later time stamps reflect a balance between a higher
false alarm rate in hybrid initialized forecasts and a lower
probability of detection in forecasts initialized with the EnKF.

d. Sequential data assimilation cycling with the
Thompson microphysical scheme

Having established the relevance of microphysical quanti-
ties for filter-specific behavior indicated by forecast evolu-
tions, we expanded our analysis by performing an additional
sequential data assimilation experiment using the Thompson
microphysical scheme in place of the NSSL microphysical
scheme used in our other case studies. For this experiment,
we performed sequential assimilation with a 15-min frequency
for the 3 July 2019 test case event featuring mixed-mode con-
vection and introduce no changes in experiment parameters
other than a different microphysical scheme. From our set of
forecasts, we again present verification metrics in the form of
FSS, POD, and FAR. We present these along with corre-
sponding metrics for the same test case event using NSSL mi-
crophysics in Fig. 17. In contrast to results presented in the
preceding subsection, forecast verification with Thompson mi-
crophysics shows an unambiguous advantage for cycling with
hybrid assimilation, which is associated with relatively high
false alarm rates for the EnKF at early forecast time stamps
and a strong advantage in POD for the hybrid at later time
stamps. As for our experiments with NSSL microphysics, we
also produced estimates for cold pool strength over the course
of sequential cycling. These results are shown as the black

FIG. 17. Fractions skill score for forecasts from sequential data assimilation with (a) NSSL and (d) Thompson microphysics. False alarm
rate with (b) NSSL and (e) Thompson microphysics. Probability of detection with (c) NSSL and (f) Thompson microphysics. Metrics are
aggregated for the 3 Jul 2019 test event based on time after initialization. Solid lines indicate median values and dashed lines indicate
25th- and 75th-percentile values.
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line in Fig. 13. For the 3 July 2019 case study, sequential as-
similation with Thompson microphysics shows a highly similar
filter specific difference in cold pool intensity compared to the
same experiment performed with NSSL microphysics.

5. Discussion

a. Posterior characteristics of the hybrid particle filter

The benefits of particle filtering for state estimation lie in
the ability to correctly sample from underlying non-Gaussian
distributions, which comes at the expense of increased sam-
pling error compared to parametric methods. This trade-off
motivates the use of a hybrid method that applies EnKF as-
similation after tempering iterations with a localized particle
filter have transformed the prior sampling distribution into
Gaussian form, which can occur for Gaussian likelihoods
(Poterjoy 2022b). Our sequential data assimilation experi-
ments show that the hybrid method is able to maintain
desirable posterior characteristics when sampling from non-
Gaussian marginals for microphysical variables while outper-
forming the pure LPF in terms of RMSD for reflectivity and
radial velocity observations. Crucially, our results demon-
strate that 15-min frequency cycling with the hybrid method
produces posterior PDFs for microphysical variables that
largely remain within the region of state space support indi-
cated by the prior ensemble. This contrasts with EnKF as-
similation, which produces posterior ensemble members
containing state-space solutions outside of the model attrac-
tor basin. Since solutions outside of climatological model
priors can only be produced by data assimilation, we know
that the hybrid is at the very least producing posterior mem-
bers that more accurately depict physical relationships rep-
resented by the WRF Model.

One of the key advantages in reducing bias induced by
data assimilation is the reduction of confounding factors for
identifying residual uncertainty. In the context of our se-
quential data assimilation experiments, we see a tendency
for 5-min cycling to maintain lower mixing ratios and reflec-
tivity in prior members than for 15-min cycling, regardless
of the assimilation method. 5-min prior solutions reflect
model states with less time to deviate from observational
constraint and are potentially closer to the “true” system
state barring consideration of observational uncertainty
which is relatively low for our dense network of reflectivity
observations. The discrepancy may be the result of model
bias toward high reflectivity introduced into prior ensemble
members with longer model runs between assimilation
steps. It is especially notable that the posterior PDF gener-
ated by the hybrid at a 15-min cycling frequency reduces
probability density among high reflectivity, high mixing ra-
tio solutions in a way that closely resembles the prior PDFs
for 5-min cycling. The fact that these solutions maintain high
posterior probability densities during 15-min cycling with the
EnKF suggests that data assimilation bias is strong enough to
cover up signatures from model bias under conditions of signifi-
cantly non-Gaussian prior probability.

b. Impact of data assimilation bias on forecast evolution

Although the presence of data assimilation bias has been
acknowledged and studied in more theoretical contexts (e.g.,
Posselt 2016), our modeling framework, along with the hybrid
LPF as a reference method, allows for more direct insight into
how these biases impact forecast evolution and prior model
states during sequential assimilation with Gaussian filters.
With regards to the EnKF, data assimilation bias consistently
drives the development of heavier surface precipitation and
cold pools that are more intense and widespread than those of
the hybrid. We note that the filter specific trend in cold pool
intensity is present for sequential assimilation with both
NSSL and Thompson microphysics.

We speculate that for experiments with NSSL microphysics,
the comparable performance of the hybrid LPF and EnKF
methods in terms of root-mean-square error during sequential
data assimilation and fractions skill score for forecasts could
be the result of a compensatory effect from strong cold pools
toward making up for sluggish convective initiation by the
model. Such an effect would explain the relatively high POD
present in EnKF forecasts up to the end of the 90-min fore-
cast period. As previously noted, experiments with Thompson
microphysics show a clear verification advantage for the hy-
brid filter and low POD for EnKF forecasts past 30 min,
which suggests that compensatory advantages from DA bias
are not a factor in such cases. This may indicate that the struc-
ture of data assimilation bias alleviated by the hybrid filter
varies significantly between schemes, or that these schemes
produce differential storm evolutions from similarly struc-
tured bias.

Interestingly, results obtained from data assimilation ex-
periments using identical priors suggest that filter updates to
wind, temperature, and moisture are mediated almost entirely
by updates to microphysical quantities for time scales of about
an hour. This finding is consistent with the cumulative effects
of hydrometeor updates on cold pool strength that occurs dur-
ing cycling data assimilation and is not unprecedented given
the nonlinear relationships between microphysical variables
and consequent non-Gaussianity of their marginal prior
PDFs. Updates to microphysical variables may therefore pro-
duce more significant data assimilation bias than other state
variables. Bias introduced to microphysical variables may also
be more impactful for convective organization than bias in
other variables. Further investigation in this respect is war-
ranted due to the limited nature of our experiments that con-
sidered only a single initialization time within a single event.

6. Conclusions

a. Summary of results

The current study presents results obtained from a set of
comparative real data assimilation experiments using the lo-
calized particle filter (LPF), a hybrid LPF, and an ensemble
Kalman filter (EnKF). For each filter, we examined posterior
characteristics from sequential assimilation by constructing
prior and posterior marginal PDFs for microphysical variables
with defined nonlinear physical relationships. Posterior EnKF
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ensemble members show a significant departure from the sup-
port of climatological PDFs indicated by prior ensemble
members in accordance with model physics over the duration
of our test events, providing evidence for strong data assimila-
tion bias in updates to microphysical quantities. In contrast,
both hybrid and LPF assimilation produce posterior PDFs
that more closely match climatological prior PDFs. We calcu-
lated verification statistics to quantify prior mean errors dur-
ing sequential data assimilation, showing that the hybrid
method is able to outperform the pure LPF and achieve simi-
lar verification scores to assimilation with an EnKF. We then
compared the impact of hybrid and EnKF assimilation on
forecast evolution by calculating a proxy for cold pool
strength over the course of sequential assimilation, demon-
strating that cycling with the EnKF produces significantly
stronger cold pools than cycling with a hybrid particle filter.
To understand these findings, we compared data assimilation
experiments performed using identical priors for the pair of
data assimilation schemes. Our results suggest that even a sin-
gle filter update produces initial conditions that are distinct
enough to cause major differences in cold pool propagation.
Crucially, these experiments also show that updating only
non-microphysical variables is insignificant for reproducing
filter-specific differences, which we attribute to strong non-
Gaussianity for microphysical quantities. Having established
contrasting behavior in forecast evolution with EnKF and hy-
brid assimilation, we used neighborhood verification metrics
to examine the performance of ensemble forecasts initialized
during sequential data assimilation experiments. Fractions
skill scores calculated for simulated reflectivity are compara-
ble between filters and are mediated by distinct behavior in
probability of detection and false alarm rate. Nevertheless, re-
peating experiments using Thompson microphysics yielded
significant changes in relative forecast skill, with the hybrid
showing advantages over the EnKF. This finding underscores
the importance of uncovering bias induced by data assimila-
tion assumptions to validate choices for subgrid-scale parame-
terization schemes. As a whole, our results suggest that the
hybrid particle filter introduces less data assimilation bias dur-
ing updates to microphysical and other quantities than Gauss-
ian methods, which translates to quantifiable differences in
forecast verification and in the dynamic evolution of modeled
convective storms.

b. The hybrid particle filter as an emerging tool for
scheme selection and parameter estimation

The unique properties offered by the hybrid particle filter
make it well suited for parameterization scheme selection and
parameter estimation within the context of a given scheme.
The latter could be done through a joint state and parameter
space estimation using an augmented state vector approach.
Joint state-parameter estimation has been performed with
EnKFs but can suffer degraded performance from bias induced
by Gaussian assumptions. This bias arises from non-Gaussianity
in the state and is further aggravated by the nonlinear coupling
of parameters to model responses (Ruckstuhl and Janjić 2018).
As demonstrated by our current findings, the hybrid particle

filter is able to significantly reduce bias introduced when sam-
pling non-Gaussian PDFs, and therefore may be more amena-
ble to such an approach. The high-dimensional, nonlinear
optimization problems posed in scheme selection and param-
eter estimation may also be conveniently approached using
genetic algorithm-type optimization methods that avoid ex-
pensive and often intractable efforts at quantifying bias
across the parameter space (Wang 1997). In the geosciences,
these methods have been applied to parameter optimization
for runoff and mineral deposit models (Siriwardene and
Perera 2006; Abdelazeem et al. 2019). Applying this method
for atmospheric models would involve the optimization of
schemes and parameters by a natural selection type process
that uses verification statistics to modify, add, or remove dis-
crete ensembles with varying parameter space configurations
over the course of sequential data assimilation for a variety
of nonidealized case events. Although this approach is techni-
cally feasible using any ensemble filtering method, our results
have shown that data assimilation bias introduced through
Gaussian assumptions can quickly translate to large impacts
on forecast evolution and verification statistics that vary be-
tween parameterization schemes, and which could over-
whelm selection pressures imposed by model behavior on its
own. Using the hybrid LPF as our filtering method opens the
door to a genetic algorithm approach that selects parameter
configurations based on the performance of model configura-
tions informed by observations in a manner consistent with
their own attractor basin. This approach, therefore, allows
for optimization in nonidealized contexts without significant
hindrance by initial condition uncertainty.

Acknowledgments. This study was supported by a National
Science Foundation CAREER Award AGS1848363. We would
like to also acknowledge high-performance computing support
from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s
Computational and Information Systems Laboratory, sponsored
by the National Science Foundation.

Data availability statement. HRRR data are publicly avail-
able from NOAA at archives hosted by Amazon Web Services
(https://registry.opendata.aws/noaa-hrrr-pds/) and Google Cloud
Platform (https://console.cloud.google.com/marketplace/product/
noaa-public/hrrr?project=python-232920&pli=1). NEXRAD data
are made openly available by NOAA via multiple sources
(https://doi.org/10.7289/V5W9574V). Code used by the authors to
generate ensemble analyses and forecasts is available on a Github
repository (https://github.com/synopticscale/WRF-DART).

REFERENCES

Abdelazeem, M., M. Gobashy, M. H. Khalil, and M. Abdrabou,
2019: A complete model parameter optimization from self-
potential data using Whale algorithm. J. Appl. Geophys., 170,
103825, https://doi.org/10.1016/j.jappgeo.2019.103825.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for
data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://doi.
org/10.1175/1520-0493(2001)129,2884:AEAKFF.2.0.CO;2.

M C CURRY E T A L . 1627JULY 2023

Brought to you by U.S. Department Of Commerce, Boulder Labs Library | Unauthenticated | Downloaded 06/28/23 03:46 AM UTC

https://doi.org/10.5065/D6RX99HX
https://registry.opendata.aws/noaa-hrrr-pds/
https://console.cloud.google.com/marketplace/product/noaa-public/hrrr?project=python-232920&pli=1
https://console.cloud.google.com/marketplace/product/noaa-public/hrrr?project=python-232920&pli=1
https://doi.org/10.7289/V5W9574V
https://github.com/synopticscale/WRF-DART
https://doi.org/10.1016/j.jappgeo.2019.103825
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2


}}, and N. Collins, 2007: Scaleable implementation of ensemble
filter algorithms for data assimilation. J. Atmos. Oceanic
Technol., 24, 1452–1463, https://doi.org/10.1175/JTECH2049.1.

Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlin-
ear ensemble filter for high-dimensional systems. J. Geophys.
Res., 108, 8775, https://doi.org/10.1029/2002JD002900.

}}, P. Bickel, and B. Li, 2008: Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems.
Probability and Statistics: Essays in Honor of David A. Freed-
man, D. Nolan and T. Speed, Eds., Vol. 2, Institute of Mathe-
matical Statistics, 316–334.

Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for
the bootstrap particle filter in high dimensions. Pushing the
Limits of Contemporary Statistics: Contributions in Honor of
Jayanta K. Ghosh, B. Clarke and S. Ghosal, Eds., Vol. 3, In-
stitute of Mathematical Statistics, 318–329.

Chen, F., and J. Dudhia, 2001: Coupling an advanced land sur-
face–hydrology model with the Penn State–NCAR MM5
modeling system. Part I: Model implementation and sensitiv-
ity. Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/
1520-0493(2001)129,0569:CAALSH.2.0.CO;2.

Chustagulprom, N., S. Reich, and M. Reinhardt, 2016: A hybrid
ensemble transform particle filter for nonlinear and spatially
extended dynamical systems. SIAM/ASA J. Uncertainty Quantif.,
4, 592–608, https://doi.org/10.1137/15M1040967.

Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001: An intro-
duction to sequential Monte Carlo methods. Sequential
Monte Carlo Methods in Practice, Springer-Verlag, 2–14.

Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-
scale ensemble data assimilation. J. Atmos. Oceanic Technol.,
26, 911–927, https://doi.org/10.1175/2008JTECHA1156.1.

Farchi, A., and M. Bocquet, 2018: Review article: Comparison of
local particle filters and new implementations. Nonlinear Pro-
cesses Geophys., 25, 765–807, https://doi.org/10.5194/npg-25-
765-2018.

Ghonima, M. S., H. Yang, C. K. Kim, T. Heus, and J. Kleissl,
2017: Evaluation of WRF SCM simulations of stratocumulus-
topped marine and coastal boundary layers and improve-
ments to turbulence and entrainment parameterizations. J.
Adv. Model. Earth Syst., 9, 2635–2653, https://doi.org/10.1002/
2017MS001092.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel
approach to nonlinear/non-Gaussian state estimation. IEE
Proc., 140, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015.

Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. Hunt, 2011:
Balance and ensemble Kalman filter localization techniques.
Mon. Wea. Rev., 139, 511–522, https://doi.org/10.1175/
2010MWR3328.1.

Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble
Kalman filter for atmospheric data assimilation. Mon. Wea.
Rev., 144, 4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shepard, S. A.
Clough, and W. D. Collins, 2008: Radiative forcing by long-
lived greenhouse gases: Calculations with the AER radiative
transfer models. J. Geophys. Res., 113, D13103, https://doi.
org/10.1029/2008JD009944.

James, E. P., and Coauthors, 2022: The High-Resolution Rapid
Refresh (HRRR): An hourly updating convection-allowing
forecast model. Part II: Forecast performance. Wea. Forecast-
ing, 37, 1397–1417, https://doi.org/10.1175/WAF-D-21-0130.1.

Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, and
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